WE START WITH YES.

HIGH TEMPERATURE RECEIVER DESIGN AND ANALYSIS PACKAGE

MARK MESSNER
Argonne National Laboratory

BIPUL BARUAArgonne National Laboratory

MIKE MCMURTREY
Idaho National Laboratory

Gen 3 CSP Summit 2021 August 26th, 2021

FAST, ACCURATE RECEIVER LIFE ESTIMATION

- Designing a durable metallic receiver is challenging at Gen 3 conditions
 - Max metal temperature > 800° C even Ni-based alloys have diminished strength
 - Solar flux in non-uniform panel-to-panel, tube-totube, and both circumferentially and axially in each tube – leads to large thermal stresses
 - An accurate model is nonlinear and state-dependent
 - Approximate models typically neglect:
 - Thermal stress not accurate for CSP systems
 - Alternating load ignores the detrimental effect of creep-fatigue and potential for resetting thermal stress
 - Creep deformation/stress relaxation actually too conservative
- A fast, accurate means to estimate the life of a receiver could reduce risk and cost of next-gen systems

APPROACH AND OPEN SOURCE SOFTWARE PACKAGE

Input: receiver materials, geometry, incident flux, fluid temperatures, and pressures

Output: estimated life

Complete version available as open source software: https://github.com/Argonne-National-Laboratory/srlife

HEURISTICS TO REDUCE THE TIME REQUIRED TO GET A LIFE PREDICTION

Where should I slice the tube? Cost versus accuracy of 1D/2D/3D analysis

10000 100000% Compute time (s) 10000% 1000 1000% 100 100% 10% 10 1% 0% 1D 2D 3D Cost — Error

These (and other) studies inform our choice of heuristics to reduce the cost of a full 3D, every tube, every panel analysis

How many tubes to analyze per panel?

MATERIAL DATA AND ALLOY 282 TESTING

• Material database:

- 316H
- Alloy 740H
- Alloy 800H
- Alloy 617
- Alloy 230*
- Alloy 282*
 - * Provisional models
- Project includes a testing component at INL to determine complete properties for wrought 282 and look at cast and weld

Preliminary creep-fatigue test results suggest Alloy 282 may have better creep-fatigue resistance compared other Ni-based alloys

A FEW INTERESTING RESULTS

Effect of outlet temperature on predicted receiver life

Panel residual life

Panel

Effect of manifold stiffness

CONCLUSIONS AND FUTURE PLANS

Immediate plans:

- Usability improvements: better windows support and automatic integration of heuristics
- Complete A282 testing and provide final recommended wrought properties
- Provide a strength reduction for cast A282

Longer term:

- Integrate receiver thermohydraulic analysis into package better integration with rest of software stack
- Design optimization studies what performance is possible given constraints
- New materials as required

